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Interactive Data Visualization

The Visualization Process in Detall
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The Visualization Process in Detall
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The Visualization Process in Detall

® Data preprocessing and transformation

¢ Process the raw data into something usable by the visualization system.
— The first part is to make sure that the data are mapped to fundamental data types
— The second step entails dealing with specific application data issues.

B Mapping for visualizations

¢ Decide on a specific visual representation.
— This requires representation mappings: geometry, color, and sound, for example.
® Rendering transformations.
¢ The final stage involves mapping from geometry data to the image

— This stage of the pipeline is very dependent on the underlying graphics library.
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The Visualization Process in Detall

® Data preprocessing and transformation

¢ Process the raw data into something usable by the visualization system.
— The first part is to make sure that the data are mapped to fundamental data types
— The second step entails dealing with specific application data issues.
Mapping for visualizations
Decide on a specific visual representation.
This requires representation mappings: geometry, color, and sound, for example.

B Rendering transformations.

¢ The final stage involves mapping from geometry data to the image

— This stage of the pipeline is very dependent on the underlying graphics library.

c E':\ECNUCL&?%ETEENOLOG A Visualization Foundations - 7
UNIVERSIDADE NOVA DE LISBOA



Mapping for visualizations

¥ Mapping for visualizations

¢ Decide on a specific visual representation.

— This requires representation mappings: geometry, color, and sound, for example.
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(a) Poor use of a bar chart. (b) Better use of a scatterplot.
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Expressiveness and Effectiveness
h
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Expressiveness and Effectiveness
-

W Expressiveness

¢ An expressive visualization presents all the information, and only the information
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Expressiveness and Effectiveness
-

W Expressiveness

¢ An expressive visualization presents all the information, and only the information

¢ Maexp = The information that we actually display to the user / information we want

to present to the user

¢ 0S5 Mops1.
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Expressiveness and Effectiveness
[

W Expressiveness

¢ An expressive visualization presents all the information, and only the information

¢ Maexp = The information that we actually display to the user / information we want

to present to the user
¢ 0= Mexp=s1.

¢ If Mexp = 1, we have ideal expressiveness
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Expressiveness and Effectiveness
D

W Expressiveness

¢ An expressive visualization presents all the information, and only the information

¢ Mexp = The information that we actually display to the user / information we want

to present to the user
¢ 0= Mexp=s1.
¢ If Mexp = 1, we have ideal expressiveness

¢ If the information displayed is less than that desired, then Meaxp < 1.
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Expressiveness and Effectiveness
N

W Expressiveness

¢ An expressive visualization presents all the information, and only the information

¢ Mexp = The information that we actually display to the user / information we want

to present to the user
0 < Mexp =1.
If Mexp = 1, we have ideal expressiveness

If the information displayed is less than that desired, then Mexp, < 1.

® & oo o

If Mexp > 1, we are presenting too much information.

— Expressing additional information is potentially dangerous, because it may not be

correct and may interfere with the interpretation of the essential information.
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Expressiveness and Effectiveness

B Effectiveness

¢ Avisualization is effective when it can be interpreted accurately and quickly and

when it can be rendered in a cost-effective manner.
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Expressiveness and Effectiveness

e

B Effectiveness

¢ Avisualization is effective when it can be interpreted accurately and quickly and

when it can be rendered in a cost-effective manner.

¢ Effectiveness thus measures a specific cost of information perception.
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Expressiveness and Effectiveness

u Effectiveness
¢ Avisualization is effective when it can be interpreted accurately and quickly and
when it can be rendered in a cost-effective manner.
¢ Effectiveness thus measures a specific cost of information perception.

¢ Mer=11 (1 + timeinterpret + timerender)-
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Expressiveness and Effectiveness

B Effectiveness

¢ Avisualization is effective when it can be interpreted accurately and quickly and

when it can be rendered in a cost-effective manner.
¢ Effectiveness thus measures a specific cost of information perception.
¢ Mer=11 (1 + timeinterpret + timerender)-

‘ O<Meff51.
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Expressiveness and Effectiveness

m Effectiveness
¢ Avisualization is effective when it can be interpreted accurately and quickly and
when it can be rendered in a cost-effective manner.
Effectiveness thus measures a specific cost of information perception.
Mers =11 (1 + timeinterpret + timerender).

O<Meff51.

® & oo o

The larger Merr is, the greater the visualization’s effectiveness.
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Expressiveness and Effectiveness

N

u Effectiveness
¢ Avisualization is effective when it can be interpreted accurately and quickly and
when it can be rendered in a cost-effective manner.
Effectiveness thus measures a specific cost of information perception.
Mers =11 (1 + timeinterpret + timerender).
0 < Metr =1.

The larger Merr is, the greater the visualization’s effectiveness.

® & & oo o

If Mersis small, then either the interpretation time is very large, or the rendering

time is large.
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Expressiveness and Effectiveness

B Effectiveness

¢

® & & oo o

A visualization is effective when it can be interpreted accurately and quickly and

when it can be rendered in a cost-effective manner.

Effectiveness thus measures a specific cost of information perception.
Mers =11 (1 + timeinterpret + timerender).

0 < Metr =1.

The larger Merr is, the greater the visualization’s effectiveness.

If Mersis small, then either the interpretation time is very large, or the rendering

time is large.

If Merr is large (close to 1), then both the interpretation and the rendering time are

very small.
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Expressiveness and Effectiveness
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The information in (b) can be interpreted more accurately or more quickly than that in (a) for
some questions. For example, which car has the best mileage?

However, if we ask which car has the best mileage under $11,000?
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Expressiveness and Effectiveness

Task: presenting the car prices and mileage for 1979
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Figure 4.3. (a) Scatterplot using plus as symbol provides good query-answering capabilities,

but is slower for simple one-variable queries. (b) Bar charts clearly display cost and
mileage, but don’t provide as much flexibility in answering some other queries.
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Interactive Data Visualization

Semiology of Graphical Symbols
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Semiology of Graphical Symbols
_
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Semiology of Graphical Symbols

B The science of graphical symbols and marks is called semiology.
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Semiology of Graphical Symbols

B The science of graphical symbols and marks is called semiology.

B Every possible construction in the Euclidean plane is a graphical
representation made up of graphical symbols (diagrams, networks, maps,

plots, and other common visualizations).
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Semiology of Graphical Symbols

N

B The science of graphical symbols and marks is called semiology.

® Every possible construction in the Euclidean plane is a graphical
representation made up of graphical symbols (diagrams, networks, maps,

plots, and other common visualizations).

B Semiology uses the qualities of the plane and objects on the plane to produce
similarity features, ordering features, and proportionality features of the data

that are visible for human consumption.
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Symbols and Visualizations
-

(a)

(a) Symbol with obvious meaning.

® (@) is universally recognizable.

Such images become preattentively recognizable with experience.

W (a)is perceived in one step, and that step is simply an association of its

meaning
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Symbols and Visualizations
h

(b) Representation with complex meaning.

® (b) requires a great deal of attention to understand;

 the first steps are to recognize patterns within (b) and identify the major

elements of the image;

with the second identifying the various relationships between these.
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Semiology of Graphical Symbols
-

® Discovery of relations or patterns occurs through a mapping between any
relationship of the graphic symbols and the data that these symbols

represent.
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Semiology of Graphical Symbols
-

® Discovery of relations or patterns occurs through a mapping between any
relationship of the graphic symbols and the data that these symbols
represent.

¢ any pattern on the screen must imply a pattern in the data.
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Semiology of Graphical Symbols

® Discovery of relations or patterns occurs through a mapping between any
relationship of the graphic symbols and the data that these symbols
represent.

¢ any pattern on the screen must imply a pattern in the data.

— If it does not, then it is an artifact of the selected representation (and is

disturbing).
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Semiology of Graphical Symbols

® Discovery of relations or patterns occurs through a mapping between any
relationship of the graphic symbols and the data that these symbols

represent.

¢ any pattern on the screen must imply a pattern in the data.
— If it does not, then it is an artifact of the selected representation (and is
disturbing).
¢ Similarly, any perceived pattern variation in the graphic or symbol cognitively

implies such a similar variation in the data.
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Semiology of Graphical Symbols

® Discovery of relations or patterns occurs through a mapping between any

relationship of the graphic symbols and the data that these symbols

represent.

¢ any pattern on the screen must imply a pattern in the data.
— If it does not, then it is an artifact of the selected representation (and is
disturbing).
¢ Similarly, any perceived pattern variation in the graphic or symbol cognitively
implies such a similar variation in the data.
¢ Any perceived order in graphic symbols is directly correlated with a perceived

corresponding order between the data, and vice versa
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Features of Graphics

¥ Graphics have three (or more) dimensions.

Matrix representation of a set of relationships between nodes in a graph. The size
represents the strength of the relationship.

® Every point of the graphic can be interpreted as a relation between a position

in X and a position in y. The points vary in size, providing a third dimension or

variable to interpret.

C
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Rules of Graphics

_

Fc t E%%UCﬁRQ%ETEENOLOGIA Visualization Foundations - 19

UNIVERSIDADE NOVA DE LISBOA



Rules of Graphics
-

® The aim of a graphic is to discover groups or orders in x, and groups or

orders in y, that are formed on z-values;
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Rules of Graphics
-

® The aim of a graphic is to discover groups or orders in x, and groups or

orders in y, that are formed on z-values;

B (X, Yy, z)-construction enables in all cases the discovery of these groups;
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Rules of Graphics
.

® The aim of a graphic is to discover groups or orders in x, and groups or

orders in y, that are formed on z-values;
¥ (x, Yy, z)-construction enables in all cases the discovery of these groups;

® Within the (x,y,z)-construction, permutations and classifications solve the

problem of the upper level of information;

c E?ECNUCI]RQ%ET[E)ENOLOGM Visualization Foundations - 19
UNIVERSIDADE NOVA DE LISBOA



Rules of Graphics

B The aim of a graphic is to discover groups or orders in x, and groups or

orders in y, that are formed on z-values;
B (X, Yy, z)-construction enables in all cases the discovery of these groups;

B Within the (x,y,z)-construction, permutations and classifications solve the

problem of the upper level of information;

B Every graphic with more than three factors that differs from the (x, y, z)-
construction destroys the unity of the graphic and the upper level of

information;
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Rules of Graphics

B The aim of a graphic is to discover groups or orders in x, and groups or

orders in y, that are formed on z-values;
B (X, Yy, z)-construction enables in all cases the discovery of these groups;

B Within the (x,y,z)-construction, permutations and classifications solve the

problem of the upper level of information;

B Every graphic with more than three factors that differs from the (x, y, z)-
construction destroys the unity of the graphic and the upper level of

information;

® Pictures must be read and understood by the human.
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Interactive Data Visualization

The Eight Visual Variables
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Spatial arrangement of marks
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Spatial arrangement of marks

¥ For the most part, all graphic primitives will be termed marks.
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Spatial arrangement of marks
|

¥ For the most part, all graphic primitives will be termed marks.

® One way to encode data for display is to map different data values to different

marks and their attributes.
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Spatial arrangement of marks
L

¥ For the most part, all graphic primitives will be termed marks.

® One way to encode data for display is to map different data values to different
marks and their attributes.

® However, marks by themselves do not define informative displays, since all the
marks would simply obscure all previously drawn marks; it is only through the

spatial arrangement of marks that informative displays are created.
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Spatial arrangement of marks

¥ For the most part, all graphic primitives will be termed marks.

® One way to encode data for display is to map different data values to different
marks and their attributes.

® However, marks by themselves do not define informative displays, since all the
marks would simply obscure all previously drawn marks; it is only through the
spatial arrangement of marks that informative displays are created.

® Once the layout and types of marks are specified, then additional graphical

properties can be applied to each mark.
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Spatial arrangement of marks

¥ For the most part, all graphic primitives will be termed marks.

® One way to encode data for display is to map different data values to different
marks and their attributes.

® However, marks by themselves do not define informative displays, since all the
marks would simply obscure all previously drawn marks; it is only through the
spatial arrangement of marks that informative displays are created.

® Once the layout and types of marks are specified, then additional graphical
properties can be applied to each mark.
¢ Marks can vary in size, can be displayed using different colors, and can be

mapped to different orientations, all of which can be driven by data to convey

information.
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Eight visual variables

¥ eight visual variables:

¢

® & & & oo oo o

position,
shape,
size,
brightness,
color,
orientation,
texture,

motion

It 1s important to remember that the
result will be an image that is to be

interpreted by the human visual

system

C
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Eight visual variables: Position

B The first and most important visual variable is that of position, the placement of
representative graphics within some display space, be it one-, two-, or three-

dimensional.
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Eight visual variables: Position

B The first and most important visual variable is that of position, the placement of
representative graphics within some display space, be it one-, two-, or three-

dimensional.
W Spatial arrangement of graphics is the first step in reading a visualization:

¢ The maximization of the spread of representational graphics throughout the
display space maximizes the amount of information communicated, to some

degree.
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Eight visual variables: Position

B The first and most important visual variable is that of position, the placement of

representative graphics within some display space, be it one-, two-, or three-

dimensional.
W Spatial arrangement of graphics is the first step in reading a visualization:

¢ The maximization of the spread of representational graphics throughout the

display space maximizes the amount of information communicated, to some

degree.

¢ Worst case positioning scheme maps all graphics to the exact same position
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Eight visual variables: Position

N

B The first and most important visual variable is that of position, the placement of

representative graphics within some display space, be it one-, two-, or three-

dimensional.
W Spatial arrangement of graphics is the first step in reading a visualization:

¢ The maximization of the spread of representational graphics throughout the
display space maximizes the amount of information communicated, to some

degree.
¢ Worst case positioning scheme maps all graphics to the exact same position

¢ Best positioning scheme maps each graphic to unique positions, such that all the

graphics can be seen with no overlaps.
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* NTSC and PAL/SECAM are analog video standards with no fixed horizontal resolution. The resolutions
depicted here for 4:3 aspect ratio assume sqluare pixels, but the actual horizontal resolution (in non-square
pixels) ranges from 320 (VHS/Betamax) to 720 (DVD) for both standards.

** A|th0lé?h computer industr{ defines SIF as 384x288 for PAL countries (for NTSC countries, it is equivalent

i

to QVGA), MPEG-1 defines it as 352x288 (CIF) or 360x288 (for NTSC: 352x240 or 360x240).

t The resolutions depicted here for 16:9 widescreen NTSC and PAL/SECAM assume sq[;Jare pixels, but the

actual horizontal resolution (in non-square pixels) ranges from 520 (PALplus) to 720 (DVD).

$ Although Digital Cinema System specifies 2K at the depicted resolution in square pixels, in some . QSXGA
situations it can assume non-square pixels and go as high as 2048 x 1536. Aspect ratio 17:9 is approximate. 2560 x 2048

e e
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lon

Screen resolut

Ight visual variables

| data set

igina

: 53% of items from or

® Preprocessed data
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Eight visual variables: Position - Scales
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Example visualizations: (a) using position to convey information. Displayed here
is the minimum price versus the maximum price for cars with a 1993 model year.
The spread of points appears to indicate a linear relationship between minimum
and maximum price; (b) another visualization using a different set of variables.
This figure compares minimum price with engine size for the 1993 cars data set.
Unlike (a), there does not appear to be a strong relationship between these two
variables.
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ht visual variables: Position - Scales
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iiﬂht visual variables: Position - Scales
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Life expectancy v

ht visual variables: Position - Scales
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Eight visual variables: Mark (or shape)

_
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Eight visual variables: Mark (or shape)
—

® The second visual variable is the mark or shape: points, lines, areas, volumes, and

their compositions.
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Eight visual variables: Mark (or shape)
[ m—

® The second visual variable is the mark or shape: points, lines, areas, volumes, and

their compositions.

® Marks are graphic primitives that represent data:

O+AHRVe

Several examples of different marks or glyphs that can be used.
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Eight visual variables: Mark (or shape)
—

® The second visual variable is the mark or shape: points, lines, areas, volumes, and

their compositions.

® Marks are graphic primitives that represent data:

O+AHRVe

Several examples of different marks or glyphs that can be used.

¥ Example with google maps N

EEEEEEEE
L] |

Forma do icone

Q

L]

Mais icones
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Eight visual variables: Mark (or shape)
D

® The second visual variable is the mark or shape: points, lines, areas, volumes, and

their compositions.

® Marks are graphic primitives that represent data:

O+AHRVe

Several examples of different marks or glyphs that can be used.

¥ Example with google maps .

EEEEEEEENTE
L] -

Forma do icone

v
!

Mais icones

¥ When using marks, it is important to consider how well one mark can be

differentiated from other marks
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Eight visual variables: Mark (or shape)
L

50 _[. M Compact
® Large
A Midsize
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Highway MPG
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20

Horsepower

This visualization uses shapes to distinguish between different car types in a plot
comparing highway MPG and horsepower. Clusters are clearly visible, as well as
some outliers.
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Eight visual variables
-

B The position and marks, are required to define a visualization. Without these

two variables there would not be much to see !
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Eight visual variables
-

B The position and marks, are required to define a visualization. Without these

two variables there would not be much to see !

¥ The remaining visual variables affect the way individual representations are

displayed;
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Eight visual variables
[ m—

B The position and marks, are required to define a visualization. Without these

two variables there would not be much to see !

¥ The remaining visual variables affect the way individual representations are

displayed;

¥ These are the graphical properties of marks other than their shape.
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Eight visual variables: Size

Example sizes to encode data.
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Eight visual variables: Size

Example sizes to encode data.

B Size easily maps to interval and continuous data variables, because that property

supports gradual increments over some range.
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Eight visual variables: Size

Example sizes to encode data.

B Size easily maps to interval and continuous data variables, because that property

supports gradual increments over some range.

® It is more difficult to distinguish between marks of near similar size, and thus size

can only support categories with very small cardinality.
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Eight visual variables: Size

Example sizes to encode data.

B Size easily maps to interval and continuous data variables, because that property

supports gradual increments over some range.

® It is more difficult to distinguish between marks of near similar size, and thus size

can only support categories with very small cardinality.

® A confounding problem with using size is the type of mark.

¢
¢

For points, lines, and curves the use of size works well

when marks are represented with graphics that contain sufficient area, the

quantitative aspects of size fall, and the differences between marks becomes more

qualitative.

C
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Eight visual variables: Size
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Fucl Tank Capacity

This is a visualization of the 1993 car models data set, showing engine size versus

fuel tank capacity. Size is mapped to maximum price charged.
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Eight visual variables: Brightness (ou luminance)
D

B Brightness is the second visual variable used to modify marks to encode additional

T HEE

Brightness scale for mapping values to the display.

data variables.
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Eight visual variables: Brightness (ou luminance)
D

B Brightness is the second visual variable used to modify marks to encode additional

T HEE

Brightness scale for mapping values to the display.

data variables.
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Eight visual variables: Brightness (ou luminance)
D

B Brightness is the second visual variable used to modify marks to encode additional

T HEE

Brightness scale for mapping values to the display.

data variables.
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Eight visual variables: Brightness (ou luminance)
D

B Brightness is the second visual variable used to modify marks to encode additional

T HEE

Brightness scale for mapping values to the display.

data variables.
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Eight visual variables: Brightness (ou luminance)

B Brightness is the second visual variable used to modify marks to encode additional

data variables.

l

Brightness scale for mapping values to the display.

B While it is possible to use the complete numerical range of brightness values, human

perception cannot distinguish between all pairs of brightness values.
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Eight visual variables: Brightness (ou luminance)
D

B Brightness is the second visual variable used to modify marks to encode additional

T HEE

Brightness scale for mapping values to the display.

data variables.

B While it is possible to use the complete numerical range of brightness values, human

perception cannot distinguish between all pairs of brightness values.

B Brightness can be used to provide relative difference for large interval and

continuous data variables,
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Eight visual variables: Brightness (ou luminance)
| .

B Brightness is the second visual variable used to modify marks to encode additional

Brightness scale for mapping values to the display.

data variables.

B While it is possible to use the complete numerical range of brightness values, human

perception cannot distinguish between all pairs of brightness values.

B Brightness can be used to provide relative difference for large interval and

continuous data variables,

B or for mark distinction for marks drawn using a reduced sampled brightness scale.
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Eight visual variables: Brightness (ou luminance)
L

6500

5960 u
g

H 'm -
- &
5420 o ! B
.

RPM
=

im B N
4880
H B ~
m
& m
4340
m
)]
3800 Eq
4 : D
i N :\e \°- ’ \°‘&F a“:? ’
Fuel Tank Capacity

Another visualization of the 1993 car models data set, this time illustrating the use
of brightness to convey car width (the darker the points, the wider the vehicle).
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Eiﬂht visual variables: Color

® Color maps are useful for handling both interval and continuous data variables, since

a color map is generally defined as a continuous range of hue and saturation values

20347

187.87

Length (in)

172.27

$ - N > J
: z S 3 > >

Wheel Base (in)

A visualization of the 1993 car models, h0W1n the use of or to »1s bla _te

car’s length. Here length is also assoc1ted'v&?1t”té'ylax1sn (s plotted amnst
wheelbase. In this figure, blue 1nd1cates a shorter length Wh1le yellow 1nd1cates a
longer length Y oAt o < B v e = " 2 L o oy .~ Seas = " FIORDD
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Eight visual variables: Color
[ e

® When working with categorical or interval data with very low cardinality, it is generally
acceptable to manually select colors for individual data values, which are selected to

optimize the distinction between data types

City MPG %
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ht visual variables: Color
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Eight visual variables: Color

_

® Check and try with: www.colorbrewer2.org
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http://www.colorbrewer2.org

Eight visual variables: Color

_

Number of data classes: 3 i ow to use updates download ed

Nature of your data: i
©sequential ¢ diverging  qualitative

Pick a color scheme:
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Eight visual variables: Color
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Number of data classes: 7 i ow to use updates download B W Queen — A Kind of
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Eight visual variables: Orientation
[ —

B Orientation is a principal graphic component behind iconographic stick figure

displays, and is tied directly to preattentive vision.

| | [ 144777

Example orientations of a representation graphic, where the lowest value maps to
the mark pointing upward and increasing values rotate the mark in a clockwise
rotation.
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Eight visual variables: Orientation
| e

B Orientation is a principal graphic component behind iconographic stick figure

displays, and is tied directly to preattentive vision.

| | 144777

Example orientations of a representation graphic, where the lowest value maps to
the mark pointing upward and increasing values rotate the mark in a clockwise
rotation.

¥ The best marks for using orientation are those with a natural single axis; the graphic

exhibits symmetry about a major axis.
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Eight visual variables: Orientation

_

Fuel Tank Capacity
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Highway MPG

Sample visualization of the 1993 car models data set depicting using highway miles-
per-gallon versus fuel tank capacity (position) with the additional data variable,

midrange price, used to adjust mark orientation.
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Eight visual variables: Texture
-

¥ Texture can be considered as a combination of many of the other visual variables,
including marks (texture elements), color (associated with each pixel in a texture

region), and orientation (conveyed by changes in the local color).

® Texture is most commonly sl e 4

c:,.:.;.
vy
251 "2

associated with a polygon,

202 -

region, or surface.

153

Horscpower

Wheel Base (1n)

Example visualization using texture to provide additional information about the
1993 car models data set, showing the relationship between wheelbase versus horse-
power (position) as related to car types, depicted by different textures.
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Eight visual variables: Motion

B Motion can be associated with any of the other visual variables, since the way a

variable changes over time can convey more information.

® One common use of motion is in varying the speed at which a change is occurring

(such as position change or flashing, which can be seen as changing the opacity).

B The other aspect of motion is in the direction for position, this can be up, down, left,
right, diagonal, or basically any slope, while for other variables it can be larger/

smaller, brighter/dimmer, steeper/shallower angles, and so on.
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Effects of Visual Variables

_
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Effects of Visual Variables
T

B Selective visual variables:

¢ After coding with such variables, different data values are
spontaneously divided by the human into distinguished groups (e.g.,

for visualizing nominal values).
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Effects of Visual Variables

B Selective visual variables:

¢ After coding with such variables, different data values are
spontaneously divided by the human into distinguished groups (e.g.,

for visualizing nominal values).

— Size (length, area/volume);

— Brightness;

—  Texture;

— Color (only primary colors): varies with the brightness value;

— Direction / orientation.
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Effects of Visual Variables
_—

B Associative visual variables:

¢ All factors have same visibility (e.g., for visualizing nominal values).
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Effects of Visual Variables

_

B Ordinal visual variables:

¢ After coding with such variables, different data values are

spontaneously ordered by the human into distinguished groups (e.g.,

for visualizing ordinal and quantitative data).

—  Texture;

—  Size;

— Brightness.
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Effects of Visual Variables

B Check the slides by Sheelagh Carpendale, University of Calgary

¢ https:/Ipages.cpsc.ucalgary.ca/~saul/hci topics/pdf files/visual-variables.pdf

® For each graphic attribute evaluates its use for each visual variable:
¢ selective (is a change enough to allow us to select it from a group?)
¢ associative (is a change enough to allow us to perceive them as a group?)

¢ quantitative (is there a numerical reading obtainable from changes in this

variable?)
¢ order (are changes in this variable perceived as ordered?)

¢ length (across how many changes in this variable are distinctions

perceptible?)
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Effects of Visual Variables (by Sheelagh Carpendale)

—
Position
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Effects of Visual Variables (by Sheelagh Carpendale)

|
Size N
- | \\L | [N
Vv selective O B
O N
O Q 7”7 ~
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Vv order
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V length

- theoretically infinite but practically limited
— association and selection ~ 5 and distinction ~ 20
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Effects of Visual Variables (by Sheelagh Carpendale)
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Effects of Visual Variables (by Sheelagh Carpendale)

Value N
(Brightness) O e \ § AN
v selective A

OO O 7 e Bmh
i ; O 7, B

V associative O S &
7= quantitative
v/ order - P p : 3 -
V length

- theoretically infinite but practically limited
— association and selection ~ < 7 and distinction ~ 10
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Effects of Visual Variables (by Sheelagh Carpendale)

Color N
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V length

- theoretically infinite but practically limited
- association and selection ~ < 7 and distinction ~ 20
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Effects of Visual Variables (by Sheelagh Carpendale)

Orientation
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iiﬁcts of Visual Variables (by Sheelagh Carpendale)

Texture

V selective

v/ associative

—Z- quantitative

—Z-order

V length

- theoretically infinite
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Effects of Visual Variables (by Sheelagh Carpendale)

Motion

V selective
- motion is one of our most powerful attention grabbers

V/ associative
— moving in unison groups objects effectively

—Z- quantitative

- subjective perception

—Z-order

? length

— distinguishable types of motion?
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Effects of Visual Variables (by Sheelagh Carpendale)

B Check the slides by Sheelagh Carpendale, University of Calgary

¢ https:/Ipages.cpsc.ucalgary.ca/~saul/hci topics/pdf files/visual-variables.pdf

® For each graphic attribute evaluates its use for each visual variable:
¢ selective (is a change enough to allow us to select it from a group?)
¢ associative (is a change enough to allow us to perceive them as a group?)

¢ quantitative (is there a numerical reading obtainable from changes in this

variable?)
¢ order (are changes in this variable perceived as ordered?)

¢ length (across how many changes in this variable are distinctions

perceptible?)
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Interactive Data Visualization

Marks and Channels by Tamara Munzner
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Channel Rankings

|
Channels: Expressiveness Types and Effectiveness Ranks
(® Magnitude Channels: Ordered Attributes ® Identity Channels: Categorical Attributes
- —e—i A . .
Position on common scale o . o Spatial region . (] .
]
=
Position on unaligned scale ' 'I ' i Color hue HER
. - . ) o ©
Length (1D size) Motion o ® G
Tilt/angle | S Shape + O N A
Area (2D size) Ll i | g
Depth (3D position) e ——e é
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Color saturation [ ]
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Figure 5.6. Channels ranked by effectiveness according to data and channel type. Ordered data should be shown
with the magnitude channels, and categorical data with the identity channels.
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Accuracy
|

Steven’s Psychophysical Power Law: S= IV

Perceived Sensation

0 1 2 3 4 5
Physical Intensity

Figure 5.7. Stevens showed that the apparent magnitude of all sensory channels
follows a power law S = I™, where some sensations are perceptually magnified
compared with their objective intensity (when n > 1) and some compressed (when
n < 1). Length perception is completely accurate, whereas area is compressed
and saturation is magnified. Data from Stevens [Stevens 75, p. 15].
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Error rates (Cleveland and McGill [Cleveland and McGill 84a]. After [Heer and Bostock])
.

Cleveland & McGill’s Results
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criminability
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Figure 5.9. Linewidth has a limited number of discriminable bins.
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Separability

N

Position Size Width Red

+ Hue (Color) + Hue (Color) + Height + Green

Py ® ® ® ' . o o ®
o o ® @ -
. o . ‘ ¢ o o %0

: . @
. e ® ' o
Fully separable Some interference Some/significant Major interference
interference

Figure 5.10. Pairs of visual channels fall along a continuum from fully separable
to intrinsically integral. Color and location are separable channels well suited to
encode different data attributes for two different groupings that can be selectively
attended to. However, size interacts with hue, which is harder to perceive for small
objects. The horizontal size and and vertical size channels are automatically fused
Into an integrated perception of area, yielding three groups. Attempts to code
separate information along the red and green axes of the RGB color space falil,
because we simply perceive four different hues. After [Ware 13, Figure 5.23].
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Interactive Data Visualization

Historical Perspective
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Historical Perspective

B Bertin (1967) Semiology of Graphics

B Mackinlay (1986) APT

B Bergeron and Grinstein (1989) Visualization Reference Model
B Wehrend and Lewis (1990)

B Robertson (1990) Natural Scene Paradigm

¥ Roth (1991) Visage and SAGE

B Casner (1991) BOZ

B Beshers and Feiner (1992) AutoVisual
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Historical Perspective

B Senay and Ignatius (1994) VISTA

® Hibbard (1994) Lattice Model

B Golovchinsky (1995) AVE

B Card, Mackinlay, and Shneiderman (1999) Spatial Substrate
B Kamps (1999) EAVE

B Wilkinson (1999) Grammar of Graphics

¥ Hoffman (2000) Table Visualizations
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Historical Perspective
-

¥ In 1967, Jacques Bertin, possibly the most important figure in

visualization theory, published his Semiologie Graphique.

Marks Points, lines, and areas
Positional || Two planar dimensions
Retinal Size, value, texture, color, orientation, and shape

Bertin’s graphical vocabulary.
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Historical Perspective

B Mackinlay (1986) introduced a design for an automated graphical
presentation designer of relational information, named APT (A

Presentation Tool)

B Mackinlay went on to describe graphical languages, defining graphical
presentations as sentences of these languages. Two graphic design

criteria: expressiveness criterion, the effectiveness criterion,

B The important aspect of Mackinlay’s work pertains to his composition
algebra, a collection of primitive graphic languages and composition

operators that can form complex presentations.
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H"itorical Perspective

Marks Points, lines, and areas

Positional || 1D, 2D, and 3D

Temporal || Animation

Retinal Color, shape, size, saturation, texture, and orientation

Mackinlay’s graphical vocabulary, extended from Bertin.

Encoding Technique Primitive Graphical Language

Retinal-list Color, shape, size, saturation, texture, orientation
Single-position Horizontal axis, vertical axis

Apposed-position Line chart, bar chart, plot chart

Map Road map, topographic map

Connection Tree, acyclic graph, network

Misc. (angle, contain, ...) | Pie chart, Venn diagram, ...

Mackinlay’s basis set of primitive graphical languages.
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Interactive Data Visualization

Taxonomies
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Taxonomies

B A taxonomy is a means to convey a classification

¥ In visualization, we are interested in many forms of taxonomies:
¢ data

¢ visualization techniques;

¢ tasks;

¢ methods for interaction.

B Based on the data types and a list of tasks they propose and classify around 100

techniques.
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Keller and Keller (1994) Taxonomy of Visualization Goals

B Classify visualization techniques based on the type of data being analyzed

and the user’s task(s).

® The data types:
¢ scalar (or scalar field);
¢ nominal;
¢ direction (or direction field);
¢ shape;
¢ position;

¢ spatially extended region or object (SERO).
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Keller and Keller (1994) Taxonomy of Visualization Goals

B Task list

identify: establish characteristics by which an object is recognizable
locate: ascertain the position (absolute or relative);

distinguish: recognize as distinct or different (identification is not needed);
categorize: place into divisions or classes;

cluster: group similar objects

rank: assign an order or position relative to other objects

compare: notice similarities and differences;

associate: link or join in a relationship that may or may not be of the same type;

® €& & & & o o oo o

correlate: establish a direct connection, such as causal or reciprocal.
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Shneiderman (1996) Data Type by Task Taxonomy

® The data types:

¢ one-dimensional linear;
¢ two-dimensional map;

¢ three-dimensional world;
¢ temporal;

¢ multidimensional;

¢ tree;

¢ network.
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Shneiderman (1996) Data Type by Task Taxonomy

® Shneiderman looked more at the behavior of analysts as they attempt to extract

knowledge from the data.

B Overview. Gain an overview of the entire collection.

B Zoom. Zoom in items of interest to gain a more detailed view.

W Filter. Filter out uninteresting items to allow the user to reduce the size of a search
B Details-on-demand. Select an item or group and get details when needed.

B Relate. View relationships among items.

B History. Keep a history to allow undo, replay, and progressive refinement.

B Extract. Extract the items or data in a format that would facilitate other uses.
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Keim (2002) Information Visualization Classification
h
B Keim designed a classification scheme for visualization systems based on three
dimensions: data types, visualization techniques, and interaction/distortion

methods
A
Data to be Visualized

. one-dimensional +

9

Ctwo-dimensional = i SR .
Visualization Technique

>

3. multi-ddmensional - Stacked Display

. e Pixel Display
4. text/web ; Dense pia
lcomic Display
5. hierarchies/graphs + ; .

oy Geometrically-transformed Display

6. algorithm/software+ X Standard 21/3D Display

' ' -

Standard Projection Filtering Zoom Distortion Link&Brush
Interaction and Distortion Technique

7/
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Keim (2002) Information Visualization Classification

B Keim designed a classification scheme for visualization systems based on three
dimensions: data types, visualization techniques, and interaction/distortion methods.

Classification of Visualization Techniques:
m Standard 2D/3D displays: x,y- or x,y,z-plots, bar charts, line graphs;

B Geometrically transformed displays: landscapes, scatterplot matrices, projection

pursuit techniques, prosection views, hyper-slice, parallel coordinates;

® Iconic displays: Chernoff faces, needle icons, star icons, stick figure icons, color

icons, tilebars;
® Dense pixel displays: recursive pattern, circle segments, graph sketches;

B Stacked displays: dimensional stacking, hierarchical axes, worlds-within-worlds,

tree-maps, cone trees.
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Keim (2002) Information Visualization Classification

m Classification of Interaction and Distortion Techniques:

Dynamic projection: grand tour system, XGobi, XLispStat, ExplorN;
Interactive filtering: Magic Lenses, InfoCrystal, dynamic queries, Polaris;

Interactive zooming: TableLens, PAD++, IVEE/Spotfire, DataSpace, MGV and

scalable framework;

Interactive distortion: hyperbolic and spherical distortions, bifocal displays,

perspective wall, graphical fisheye views, hyperbolic visualization, hyperbox;

Interactive linking and brushing: multiple scatterplots, bar charts, parallel
coordinates, pixel displays and maps, Polaris, scalable framework, S-Plus, XGobi,

XmdvTool, DataDesk.

C
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Interactive Data Visualization

Further Reading and Summary

Q&A
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Further Reading

® Pag 139 - 180 from Interactive Data Visualization: Foundations, Techniques, and

Applications, Matthew O. Ward, Georges Grinstein, Daniel Keim, 2015
B Pag 42 - 64 from Visualization Analysis & Design, Tamara Munzner

B Check the slides by Sheelagh Carpendale, University of Calgary

— https://pages.cpsc.ucalgary.ca/~saul/hci topics/pdf files/visual-variables.pdf
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What you should know

® The Visualization Process
® Expressiveness and Effectiveness
® The fundamental ideas of Semiology of Graphical Symbols
W data->(x,y, z%)
B The eight visual variables(VV)
W position, shape - Why they are the most important !
W the others VVs
H Effects of Visual Variables
W selective, associative, quantitative, order
W Tasks list(s)

® Why it is important to consider a task; Why it is important to consider a taxonomy
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